Mersenne banner

Séminaire de théorie spectrale et géométrie

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 22 (2003-2004)
  • p. 83-92
  • Next
The Gluck and Ziller problem with the euclidean metric
Vincent Borrelli
Séminaire de théorie spectrale et géométrie, Volume 22 (2003-2004), pp. 83-92.
  • Article information
  • Export
  • How to cite
MR: 2136137 | Zbl: 1073.53081
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2003-2004__22__83_0,
     author = {Vincent Borrelli},
     title = {The {Gluck} and {Ziller} problem with the euclidean metric},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {83--92},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     year = {2003-2004},
     zbl = {1073.53081},
     mrnumber = {2136137},
     language = {en},
     url = {https://tsg.centre-mersenne.org/item/TSG_2003-2004__22__83_0/}
}
TY  - JOUR
AU  - Vincent Borrelli
TI  - The Gluck and Ziller problem with the euclidean metric
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2003-2004
SP  - 83
EP  - 92
VL  - 22
PB  - Institut Fourier
PP  - Grenoble
UR  - https://tsg.centre-mersenne.org/item/TSG_2003-2004__22__83_0/
UR  - https://zbmath.org/?q=an%3A1073.53081
UR  - https://www.ams.org/mathscinet-getitem?mr=2136137
LA  - en
ID  - TSG_2003-2004__22__83_0
ER  - 
%0 Journal Article
%A Vincent Borrelli
%T The Gluck and Ziller problem with the euclidean metric
%J Séminaire de théorie spectrale et géométrie
%D 2003-2004
%P 83-92
%V 22
%I Institut Fourier
%C Grenoble
%G en
%F TSG_2003-2004__22__83_0
Vincent Borrelli. The Gluck and Ziller problem with the euclidean metric. Séminaire de théorie spectrale et géométrie, Volume 22 (2003-2004), pp. 83-92. https://tsg.centre-mersenne.org/item/TSG_2003-2004__22__83_0/
  • References
  • Cited by

[1] V. Borrelli AND O. Gil-Medrano, A critical radius for unit Hopf vector fields on spheres, Preprint. | MR

[2] B.-Y. Chen, Riemannian submanifolds, Handbook of Differential Geometry, Vol 1, 2000, Elsevier. | MR | Zbl

[3] O. Gil-Medrano Volume and Energy of vector fields on spheres. A survey, Differential Geometry,Valencia 2001,167-178,World Sci. Publishing, River Edge,NJ2002. | MR | Zbl

[4] O. Gil-Medrano Unit vector fields that are critical points of the volume and the energy : characterization and examples, to appear in Complex, contact and symmetric spaces : papers in honour of Lieven Vanheche. Progress in Math. Birkhauser. | MR | Zbl

[5] O. Gil-Medrano AND E. Llinares-Fuster, Second variation of Volume and Energy of vector fields. Stabilit of Hopf vector fields, Math. Ann. 320 ( 2001), 531-545. | MR | Zbl

[6] H. Gluck AND W. Ziller, On the volume of a unit vector field on the three-sphere, Comment Math. Helv. 61 ( 1986), 177-192. | MR | Zbl

Web publisher : Published by : Developed by :
  • Follow us
ISSN : 1624-5458 - e-ISSN : 2118-9242