@article{TSG_1991__S9__83_0, author = {Laurent Guillop\'e}, title = {Analyse sur les vari\'et\'es}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {83--89}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {S9}, year = {1991}, language = {fr}, url = {https://tsg.centre-mersenne.org/item/TSG_1991__S9__83_0/} }
Laurent Guillopé. Analyse sur les variétés. Séminaire de théorie spectrale et géométrie, Volume S9 (1991), pp. 83-89. https://tsg.centre-mersenne.org/item/TSG_1991__S9__83_0/
[1] Bear H. - Part metric and hyperbolic metric, Am. Math. Month., 98 ( 1991), 109-123. | MR | Zbl
[2] Berger M. , Gauduchon P., Mazet E. - Le spectre d'une variété riemannienne, Springer Lectures Notes in Math. 194, 1971. | MR | Zbl
[3] Besse A. - Manifolds all of whose geodesic are closed, Springer-Verlag, 1978. | MR | Zbl
[4] Hazewinkel M. - Encydopaedia of mathematics. Volume 5, Kluwer Academic Publishers, 1989. | Zbl
[5] Gilbarg D., Trudinger N.S. - Elliptic partial differential equations of second order. Springer-Verlag, 1977. | MR | Zbl
[6] Helgason S. - Groups and geometric analysis, Academic Press, 1984. | MR | Zbl
[7] Hörmander L. - The analysis of linear partial differential operators I, Springer-Verlag, 1990. | MR | Zbl
[8] Protter M., Weinberger H. - Maximum principles in differential equations, Springer-Verlag, 1984. | MR | Zbl
[9] Warner F. - Foundations of differentiable manifolds and Lie groups, Springer-Verlag, 1983. | MR | Zbl