@article{TSG_1984-1985__3__A10_0, author = {Jean Brossard}, title = {Effets de bord pour un tambour \`a bord fractal}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, note = {talk:10}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {3}, year = {1984-1985}, zbl = {0900.35270}, mrnumber = {1046057}, language = {fr}, url = {https://tsg.centre-mersenne.org/item/TSG_1984-1985__3__A10_0/} }
TY - JOUR AU - Jean Brossard TI - Effets de bord pour un tambour à bord fractal JO - Séminaire de théorie spectrale et géométrie N1 - talk:10 PY - 1984-1985 VL - 3 PB - Institut Fourier PP - Grenoble UR - https://tsg.centre-mersenne.org/item/TSG_1984-1985__3__A10_0/ UR - https://zbmath.org/?q=an%3A0900.35270 UR - https://www.ams.org/mathscinet-getitem?mr=1046057 LA - fr ID - TSG_1984-1985__3__A10_0 ER -
Jean Brossard. Effets de bord pour un tambour à bord fractal. Séminaire de théorie spectrale et géométrie, Volume 3 (1984-1985), Talk no. 10, 14 p. https://tsg.centre-mersenne.org/item/TSG_1984-1985__3__A10_0/
[1] Azencott R. " Grandes déviations et applications". Ecole d'été de Probabilités de Saint Flour VIII ( 1978). Lecture note in Mathematics 774. Springer-Verlag. | MR | Zbl
[2] Berard P. ( 1983), Remarques sur la conjecture de Weyl. Compos. Math. 48, 35-53. | Numdam | MR | Zbl
[3] Berry M. ( 1979), " Distribution of modes in fractal resonators". Structural stability in Physics. Ed. W. Güttinger and H. Eikemeier. Springer Verlag, 51-53. | MR | Zbl
[4] Berry M. ( 1980), " Some geometrical aspects of wave motion : wavefront, dislocations, diffraction catastrophes, diffractals". Geometry of the Lapiace Operator. Proc. Symp. Pure Math, vol. 36, 13-38, Amer. Math. Soc. Providence. | MR | Zbl
[5] Brossard J. , Carmona R. ( 1985), " Can one hear the dimension of a fractal ?" Preprint. | MR | Zbl
[6] Gromes D. ( 1966), " Uber die asymptotische Verteilung der Eigenwerte des Laplace Operators für Gebiete auf der Kugeloberfläche". Math. Z. 94, 110-121. | MR | Zbl
[7] Ivrii V. ( 1980), " Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary". Funct. Anal. Appl. 14, 98-106. | MR | Zbl
[8] Kac M. ( 1966), " Can one hear the shape of a drum ?". Amer. Math. Monthly 73, 1-23. | MR | Zbl
[9] Kuznetsov ( 1966), " Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated". Diff. Equat. 2, 715-723. | Zbl
[10] Melrose R. ( 1980), " Weyl's conjecture for manifolds with concave boundary". Geometry of the Laplace Operator, Proc. Symp. Pure Math. vol. 36, 254-274, Amer. Math. Soc. Providence. | MR | Zbl
[11] Petkov V. ( 1985), " Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux". Exposé XII (26.2.85). Séminaire Bony-Sjöstrand-Meyer. Ecole Polytechnique. | Numdam | MR | Zbl
[12] Port S., and Stone C. ( 1978), " Brownien motion and classical potential theory". Academic Press, New-York. | MR | Zbl
[13] Simon B. ( 1979), Functional integration and quantum Physics. Academic Press, New York. | MR | Zbl