Mersenne banner

Séminaire de théorie spectrale et géométrie

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 31 (2012-2014)
  • p. 197-220
Curvature cones and the Ricci flow.
Thomas Richard1
1 Room 659, Huxley Building Mathematics Department Imperial College London SW7 2AZ (UK)
Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 197-220.
  • Abstract

This survey reviews some facts about nonnegativity conditions on the curvature tensor of a Riemannian manifold which are preserved by the action of the Ricci flow. The text focuses on two main points.

First we describe the known examples of preserved curvature conditions and how they have been used to derive geometric results, in particular sphere theorems.

We then describe some recent results which give restrictions on general preserved conditions.

The paper ends with some open questions on these matters.

  • Article information
  • Export
  • How to cite
DOI: 10.5802/tsg.300
Author's affiliations:
Thomas Richard 1

1 Room 659, Huxley Building Mathematics Department Imperial College London SW7 2AZ (UK)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2012-2014__31__197_0,
     author = {Thomas Richard},
     title = {Curvature cones and the {Ricci} flow.},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {197--220},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     year = {2012-2014},
     doi = {10.5802/tsg.300},
     language = {en},
     url = {https://tsg.centre-mersenne.org/articles/10.5802/tsg.300/}
}
TY  - JOUR
AU  - Thomas Richard
TI  - Curvature cones and the Ricci flow.
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2012-2014
SP  - 197
EP  - 220
VL  - 31
PB  - Institut Fourier
PP  - Grenoble
UR  - https://tsg.centre-mersenne.org/articles/10.5802/tsg.300/
UR  - https://doi.org/10.5802/tsg.300
DO  - 10.5802/tsg.300
LA  - en
ID  - TSG_2012-2014__31__197_0
ER  - 
%0 Journal Article
%A Thomas Richard
%T Curvature cones and the Ricci flow.
%J Séminaire de théorie spectrale et géométrie
%D 2012-2014
%P 197-220
%V 31
%I Institut Fourier
%C Grenoble
%U https://doi.org/10.5802/tsg.300
%R 10.5802/tsg.300
%G en
%F TSG_2012-2014__31__197_0
Thomas Richard. Curvature cones and the Ricci flow.. Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 197-220. doi : 10.5802/tsg.300. https://tsg.centre-mersenne.org/articles/10.5802/tsg.300/
  • References
  • Cited by

[1] Ben Andrews; Christopher Hopper The Ricci flow in Riemannian geometry, Lecture Notes in Mathematics, 2011, Springer, Heidelberg, 2011, pp. xviii+296 (A complete proof of the differentiable 1/4-pinching sphere theorem) | DOI | MR | Zbl

[2] Laurent Bessières; Gérard Besson; Sylvain Maillot; Michel Boileau; Joan Porti Geometrisation of 3-manifolds, EMS Tracts in Mathematics, 13, European Mathematical Society (EMS), Zürich, 2010, pp. x+237 | DOI | MR | Zbl

[3] Christoph Böhm; Burkhard Wilking Manifolds with positive curvature operators are space forms, Ann. of Math. (2), Volume 167 (2008) no. 3, pp. 1079-1097 | DOI | MR | Zbl

[4] Simon Brendle Ricci flow and the sphere theorem, Graduate Studies in Mathematics, 111, American Mathematical Society, Providence, RI, 2010, pp. viii+176 | DOI | MR | Zbl

[5] Simon Brendle; Richard Schoen Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc., Volume 22 (2009) no. 1, pp. 287-307 | DOI | MR | Zbl

[6] Haiwen Chen Pointwise 1 4-pinched 4-manifolds, Ann. Global Anal. Geom., Volume 9 (1991) no. 2, pp. 161-176 | DOI | MR | Zbl

[7] Bennett Chow; Dan Knopf The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004, pp. xii+325 | DOI | MR | Zbl

[8] Bennett Chow; Peng Lu; Lei Ni Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI; Science Press, New York, 2006, pp. xxxvi+608 | DOI | MR | Zbl

[9] M. Gromov Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, Volume 61 (1991), p. 9-123 (1994) | DOI | MR | Zbl

[10] H. A. Gururaja; Soma Maity; Harish Seshadri On Wilking’s criterion for the Ricci flow, Math. Z., Volume 274 (2013) no. 1-2, pp. 471-481 | DOI | MR | Zbl

[11] Richard S. Hamilton Three-manifolds with positive Ricci curvature, J. Differential Geom., Volume 17 (1982) no. 2, pp. 255-306 http://projecteuclid.org/euclid.jdg/1214436922 | MR | Zbl

[12] Richard S. Hamilton Four-manifolds with positive curvature operator, J. Differential Geom., Volume 24 (1986) no. 2, pp. 153-179 http://projecteuclid.org/euclid.jdg/1214440433 | MR | Zbl

[13] Gerhard Huisken Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom., Volume 21 (1985) no. 1, pp. 47-62 http://projecteuclid.org/euclid.jdg/1214439463 | MR | Zbl

[14] Bruce Kleiner; John Lott Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | DOI | MR | Zbl

[15] Christophe Margerin Une caractérisation optimale de la structure différentielle standard de la sphère en terme de courbure pour (presque) toutes les dimensions. I. Les énoncés, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 6, pp. 605-607 | MR | Zbl

[16] Davi Máximo Non-negative Ricci curvature on closed manifolds under Ricci flow, Proc. Amer. Math. Soc., Volume 139 (2011) no. 2, pp. 675-685 | DOI | MR | Zbl

[17] Mario J. Micallef; John Douglas Moore Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2), Volume 127 (1988) no. 1, pp. 199-227 | DOI | MR | Zbl

[18] John Morgan; Gang Tian Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007, pp. xlii+521 | MR | Zbl

[19] Huy T. Nguyen Isotropic curvature and the Ricci flow, Int. Math. Res. Not. IMRN (2010) no. 3, pp. 536-558 | DOI | MR | Zbl

[20] Grisha Perelman The entropy formula for the Ricci flow and its geometric applications (http://arxiv.org/abs/math/0211159) | Zbl

[21] Grisha Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (http://arxiv.org/abs/math/0307245) | Zbl

[22] Grisha Perelman Ricci flow with surgery on three-manifolds (http://arxiv.org/abs/math/0303109) | Zbl

[23] Thomas Richard; Harish Seshadri Noncoercive Ricci flow invariant curvature cones (http://arxiv.org/abs/1308.1190)

[24] Thomas Richard; Harish Seshadri Positive isotropic curvature and self-duality in dimension 4 (http://arxiv.org/abs/1311.5256)

[25] Peter Topping Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006, pp. x+113 | DOI | MR | Zbl

[26] Burkhard Wilking A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities, J. Reine Angew. Math., Volume 679 (2013), pp. 223-247 | MR

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
ISSN : 1624-5458 - e-ISSN : 2118-9242