Mersenne banner

Séminaire de théorie spectrale et géométrie

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 31 (2012-2014)
  • p. 163-195
  • Next
Géométrie et topologie des variétés hyperboliques de grand volume
Jean Raimbault1
1 Institut de Mathématiques de Toulouse UMR 5219 Université de Toulouse CNRS, UPS IMT F-31062 Toulouse Cedex 9 (France)
Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 163-195.
  • Abstract

Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.

  • Article information
  • Export
  • How to cite
DOI: 10.5802/tsg.299
Author's affiliations:
Jean Raimbault 1

1 Institut de Mathématiques de Toulouse UMR 5219 Université de Toulouse CNRS, UPS IMT F-31062 Toulouse Cedex 9 (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2012-2014__31__163_0,
     author = {Jean Raimbault},
     title = {G\'eom\'etrie et topologie des vari\'et\'es hyperboliques de grand volume},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {163--195},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     year = {2012-2014},
     doi = {10.5802/tsg.299},
     language = {fr},
     url = {https://tsg.centre-mersenne.org/articles/10.5802/tsg.299/}
}
TY  - JOUR
AU  - Jean Raimbault
TI  - Géométrie et topologie des variétés hyperboliques de grand volume
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2012-2014
SP  - 163
EP  - 195
VL  - 31
PB  - Institut Fourier
PP  - Grenoble
UR  - https://tsg.centre-mersenne.org/articles/10.5802/tsg.299/
UR  - https://doi.org/10.5802/tsg.299
DO  - 10.5802/tsg.299
LA  - fr
ID  - TSG_2012-2014__31__163_0
ER  - 
%0 Journal Article
%A Jean Raimbault
%T Géométrie et topologie des variétés hyperboliques de grand volume
%J Séminaire de théorie spectrale et géométrie
%D 2012-2014
%P 163-195
%V 31
%I Institut Fourier
%C Grenoble
%U https://doi.org/10.5802/tsg.299
%R 10.5802/tsg.299
%G fr
%F TSG_2012-2014__31__163_0
Jean Raimbault. Géométrie et topologie des variétés hyperboliques de grand volume. Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 163-195. doi : 10.5802/tsg.299. https://tsg.centre-mersenne.org/articles/10.5802/tsg.299/
  • References
  • Cited by

[1] Miklós Abert Invariant random subgroups and their applications (Transparents d’un exposé à l’IHP, http://www.renyi.hu/~abert/IRS_talk.pdf)

[2] Miklos Abert; Nicolas Bergeron; Ian Biringer; Tsachik Gelander; Nikolay Nikolov; Jean Raimbault; Iddo Samet On the growth of L 2 -invariants for sequences of lattices in Lie groups (http://arxiv.org/abs/1210.2961)

[3] Miklós Abért; Ian Biringer Invariant measures on the space of all Riemannian manifolds (2014) (preprint)

[4] Miklós Abért; Yair Glasner; Bálint Virág Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014) no. 3, pp. 465-488 | DOI | MR

[5] Ian Agol The virtual Haken conjecture, Doc. Math., Volume 18 (2013), pp. 1045-1087 (With an appendix by Agol, Daniel Groves, and Jason Manning) | MR | Zbl

[6] Werner Ballmann; Mikhael Gromov; Viktor Schroeder Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser Boston, Inc., Boston, MA, 1985, pp. vi+263 | DOI | MR | Zbl

[7] Mikhail Belolipetsky Hyperbolic orbifolds of small volume (A paraître dans les actes de l’ICM 2014, Séoul, http://arxiv.org/abs/1402.5394)

[8] Itai Benjamini; Oded Schramm Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001), pp. no. 23, 13 pp. (electronic) | DOI | MR | Zbl

[9] N. Bergeron; D. Gaboriau Asymptotique des nombres de Betti, invariants l 2 et laminations, Comment. Math. Helv., Volume 79 (2004) no. 2, pp. 362-395 | DOI | MR | Zbl

[10] Ian Biringer; Omer Tamuz Unimodularity of Invariant Random Subgroups (http ://arxiv.org/abs/1402.1042)

[11] Béla Bollobás Random graphs, Cambridge Studies in Advanced Mathematics, 73, Cambridge University Press, Cambridge, 2001, pp. xviii+498 | DOI | MR | Zbl

[12] Robert Brooks Platonic surfaces, Comment. Math. Helv., Volume 74 (1999) no. 1, pp. 156-170 | DOI | MR | Zbl

[13] Robert Brooks; Eran Makover Random construction of Riemann surfaces, J. Differential Geom., Volume 68 (2004) no. 1, pp. 121-157 http://projecteuclid.org/euclid.jdg/1102536712 | MR | Zbl

[14] Claude Chabauty Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France, Volume 78 (1950), pp. 143-151 | Numdam | MR | Zbl

[15] Laurent Clozel Démonstration de la conjecture τ, Invent. Math., Volume 151 (2003) no. 2, pp. 297-328 | DOI | MR | Zbl

[16] B. Colbois; Y. Colin de Verdière Sur la multiplicité de la première valeur propre d’une surface de Riemann à courbure constante, Comment. Math. Helv., Volume 63 (1988) no. 2, pp. 194-208 | DOI | MR | Zbl

[17] Harold Donnelly On the spectrum of towers, Proc. Amer. Math. Soc., Volume 87 (1983) no. 2, pp. 322-329 | DOI | MR | Zbl

[18] Amichai Eisenmann; Yair Glasner Generic IRS in free groups, after Bowen (http://arxiv.org/abs/1406.1261)

[19] Michael Farber Geometry of growth : approximation theorems for L 2 invariants, Math. Ann., Volume 311 (1998) no. 2, pp. 335-375 | DOI | MR | Zbl

[20] Alexander Gamburd; Eran Makover On the genus of a random Riemann surface, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) (Contemp. Math.), Volume 311, Amer. Math. Soc., Providence, RI, 2002, pp. 133-140 | DOI | MR | Zbl

[21] Tsachik Gelander; Arie Levit Counting commensurability classes of hyperbolic manifolds, Geom. Funct. Anal., Volume 24 (2014) no. 5, pp. 1431-1447 | DOI | MR

[22] Étienne Ghys Topologie des feuilles génériques, Ann. of Math. (2), Volume 141 (1995) no. 2, pp. 387-422 | DOI | MR | Zbl

[23] R. I. Grigorchuk Topological and metric types of surfaces that regularly cover a closed surface, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 3, p. 498-536, 671 | MR | Zbl

[24] M. Gromov; I. Piatetski-Shapiro Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math., Volume 66 (1988), pp. 93-103 | Numdam | MR | Zbl

[25] Misha Gromov Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser Boston, Inc., Boston, MA, 1999, pp. xx+585 Based on the 1981 French original [ MR0682063 (85e :53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates | MR | Zbl

[26] David Kazhdan Some applications of the Weil representation, J. Analyse Mat., Volume 32 (1977), pp. 235-248 | MR | Zbl

[27] Jian-Shu Li; John J. Millson On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. J., Volume 71 (1993) no. 2, pp. 365-401 | DOI | MR | Zbl

[28] Alexander Lubotzky Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups, Volume 1 (1996) no. 1-2, pp. 71-82 | DOI | MR | Zbl

[29] Alexander Lubotzky; Dan Segal Subgroup growth, Progress in Mathematics, 212, Birkhäuser Verlag, Basel, 2003, pp. xxii+453 | DOI | MR | Zbl

[30] Colin Maclachlan; Alan W. Reid The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, 219, Springer-Verlag, New York, 2003, pp. xiv+463 | MR | Zbl

[31] Maryam Mirzakhani Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom., Volume 94 (2013) no. 2, pp. 267-300 http://projecteuclid.org/euclid.jdg/1367438650 | MR | Zbl

[32] Hossein Namazi; Pekka Pankka; Juan Souto Distributional limits of Riemannian manifolds and graphs with sublinear genus growth, Geom. Funct. Anal., Volume 24 (2014) no. 1, pp. 322-359 | DOI | MR | Zbl

[33] Amos Nevo; Robert J. Zimmer A generalization of the intermediate factors theorem, J. Anal. Math., Volume 86 (2002), pp. 93-104 | DOI | MR | Zbl

[34] Shin Ohno; Takao Watanabe Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Paul., Volume 50 (2001) no. 1, pp. 53-63 | MR | Zbl

[35] Jean-Pierre Otal; Eulalio Rosas Pour toute surface hyperbolique de genre g,λ 2g-2 >1/4, Duke Math. J., Volume 150 (2009) no. 1, pp. 101-115 | DOI | MR | Zbl

[36] Peter Petersen Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006, pp. xvi+401 | MR | Zbl

[37] Bram Petri Random regular graphs and the systole of a random surface (http://arxiv.org/abs/1311.5140)

[38] Jean Raimbault Analytic, Reidemeister and homological torsion for congruence three–manifolds (http://arxiv.org/abs/1307.2845)

[39] Jean Raimbault On the convergence of arithmetic orbifolds (http://arxiv.org/abs/1311.5375)

[40] Jean Raimbault A note on maximal lattice growth in SO (1,n), Int. Math. Res. Not., Volume 2013 (2013) no. 16, pp. 3722-3731 | DOI | MR

[41] Ian Richards On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Volume 106 (1963), pp. 259-269 | MR | Zbl

[42] Jonathan D. Rogawski Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, Princeton, NJ, 1990, pp. xii+259 | MR | Zbl

[43] Garrett Stuck; Robert J. Zimmer Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2), Volume 139 (1994) no. 3, pp. 723-747 | DOI | MR | Zbl

[44] Michael E. Taylor Partial differential equations I. Basic theory, Applied Mathematical Sciences, 115, Springer, New York, 2011, pp. xxii+654 | DOI | MR | Zbl

[45] Dave Witte Morris Introduction to Arithmetic Groups (http://arxiv.org/abs/math/0106063)

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
ISSN : 1624-5458 - e-ISSN : 2118-9242