Mersenne banner

Séminaire de théorie spectrale et géométrie

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 31 (2012-2014)
  • p. 71-89
  • Next
The semi-classical ergodic Theorem for discontinuous metrics
Yves Colin de Verdière1
1 Université de Grenoble, Institut Fourier UMR CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)
Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 71-89.
  • Abstract

In this paper, we present an extension of the classical Quantum ergodicity Theorem, due to Shnirelman, to the case of Laplacians with discontinous metrics along interfaces. The “geodesic flow” is then no more a flow, but a Markov process due to the fact that rays can by reflected or refracted at the interfaces. We give also an example build by gluing together two flat Euclidean disks.

  • Article information
  • Export
  • How to cite
DOI: 10.5802/tsg.295
Author's affiliations:
Yves Colin de Verdière 1

1 Université de Grenoble, Institut Fourier UMR CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2012-2014__31__71_0,
     author = {Yves Colin de Verdi\`ere},
     title = {The semi-classical ergodic {Theorem} for discontinuous metrics},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {71--89},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     year = {2012-2014},
     doi = {10.5802/tsg.295},
     language = {en},
     url = {https://tsg.centre-mersenne.org/articles/10.5802/tsg.295/}
}
TY  - JOUR
AU  - Yves Colin de Verdière
TI  - The semi-classical ergodic Theorem for discontinuous metrics
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2012-2014
SP  - 71
EP  - 89
VL  - 31
PB  - Institut Fourier
PP  - Grenoble
UR  - https://tsg.centre-mersenne.org/articles/10.5802/tsg.295/
UR  - https://doi.org/10.5802/tsg.295
DO  - 10.5802/tsg.295
LA  - en
ID  - TSG_2012-2014__31__71_0
ER  - 
%0 Journal Article
%A Yves Colin de Verdière
%T The semi-classical ergodic Theorem for discontinuous metrics
%J Séminaire de théorie spectrale et géométrie
%D 2012-2014
%P 71-89
%V 31
%I Institut Fourier
%C Grenoble
%U https://doi.org/10.5802/tsg.295
%R 10.5802/tsg.295
%G en
%F TSG_2012-2014__31__71_0
Yves Colin de Verdière. The semi-classical ergodic Theorem for discontinuous metrics. Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 71-89. doi : 10.5802/tsg.295. https://tsg.centre-mersenne.org/articles/10.5802/tsg.295/
  • References
  • Cited by

[1] Ralph Abraham Transversality in manifolds of mappings, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 470-474 | MR | Zbl

[2] Ralph Abraham; Joel Robbin Transversal mappings and flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967, pp. x+161 | MR | Zbl

[3] Guillaume Bal Kinetics of scalar wave fields in random media, Wave Motion, Volume 43 (2005) no. 2, pp. 132-157 | DOI | MR | Zbl

[4] Gregory Berkolaiko; Jon Keating; Brian Winn No quantum ergodicity for star graphs, Comm. Math. Phys., Volume 250 (2004) no. 2, pp. 259-285 | DOI | MR | Zbl

[5] Jacques Chazarain Construction de la paramétrix du problème mixte hyperbolique pour l’équation des ondes, C. R. Acad. Sci. Paris Sér. A-B, Volume 276 (1973), p. A1213-A1215 | MR | Zbl

[6] Hans Duistermaat; Victor Guillemin The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | MR | Zbl

[7] Nelson Dunford; Jacob T. Schwartz Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988, pp. xiv+858 (General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication) | MR | Zbl

[8] Patrick Gérard; Éric Leichtnam Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl

[9] Dmitry Jakobson; Yuri Safarov; Alexander Strohmaier; Yves Colin de Verdière (Appendix) The semi-classical theory of discontinuous systems and ray-splitting billiards (2015) (To appear in Amer. J. Math.)

[10] Ulrich Krengel Ergodic theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter & Co., Berlin, 1985, pp. viii+357 (With a supplement by Antoine Brunel) | DOI | MR | Zbl

[11] Alexander Shnirelman Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Volume 29 (1974) no. 6(180), pp. 181-182 | MR | Zbl

[12] René Thom Un lemme sur les applications différentiables, Bol. Soc. Mat. Mexicana (2), Volume 1 (1956), pp. 59-71 | MR | Zbl

[13] Yves Colin de Verdière Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 http://projecteuclid.org/euclid.cmp/1104114465 | Zbl

[14] Yves Colin de Verdière Semi-classical measures on quantum graphs and the Gauß map of the determinant manifold, Ann. Henri Poincaré, Volume 16 (2015) no. 2, pp. 347-364 | DOI | MR

[15] Yves Colin de Verdière; Luc Hillairet; Emmanuel Trélat Quantum ergodicity for sub-Riemannian Laplacians. I: the contact 3D case (2015) (http://arxiv.org/abs/1504.07112)

[16] Steven Zelditch Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl

[17] Steven Zelditch; Maciej Zworski Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys., Volume 175 (1996) no. 3, pp. 673-682 http://projecteuclid.org/euclid.cmp/1104276097 | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
ISSN : 1624-5458 - e-ISSN : 2118-9242