Mersenne banner

Séminaire de théorie spectrale et géométrie

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Full text
  • Browse issues
  • Volume 24 (2005-2006)
  • p. 9-21
  • Next
Lamination duale à un arbre réel
Arnaud Hilion1
1 LATP - UMR 6632 Université Aix-Marseille 3 Avenue de l’escadrille Normandie-Niémen 13397 Marseille Cedex 20 (France)
Séminaire de théorie spectrale et géométrie, Volume 24 (2005-2006), pp. 9-21.
  • Abstract

Nous présentons des résultats reliant un arbre réel muni d’une action par isométries du groupe libre, sa lamination duale et les courants portés par cette dernière.

  • Article information
  • Export
  • How to cite
MR: 2355555
DOI: 10.5802/tsg.237
Author's affiliations:
Arnaud Hilion 1

1 LATP - UMR 6632 Université Aix-Marseille 3 Avenue de l’escadrille Normandie-Niémen 13397 Marseille Cedex 20 (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2005-2006__24__9_0,
     author = {Arnaud Hilion},
     title = {Lamination duale \`a un arbre r\'eel},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {9--21},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     year = {2005-2006},
     doi = {10.5802/tsg.237},
     mrnumber = {2355555},
     language = {fr},
     url = {https://tsg.centre-mersenne.org/articles/10.5802/tsg.237/}
}
TY  - JOUR
TI  - Lamination duale à un arbre réel
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2005-2006
DA  - 2005-2006///
SP  - 9
EP  - 21
VL  - 24
PB  - Institut Fourier
PP  - Grenoble
UR  - https://tsg.centre-mersenne.org/articles/10.5802/tsg.237/
UR  - https://www.ams.org/mathscinet-getitem?mr=2355555
UR  - https://doi.org/10.5802/tsg.237
DO  - 10.5802/tsg.237
LA  - fr
ID  - TSG_2005-2006__24__9_0
ER  - 
%0 Journal Article
%T Lamination duale à un arbre réel
%J Séminaire de théorie spectrale et géométrie
%D 2005-2006
%P 9-21
%V 24
%I Institut Fourier
%C Grenoble
%U https://doi.org/10.5802/tsg.237
%R 10.5802/tsg.237
%G fr
%F TSG_2005-2006__24__9_0
Arnaud Hilion. Lamination duale à un arbre réel. Séminaire de théorie spectrale et géométrie, Volume 24 (2005-2006), pp. 9-21. doi : 10.5802/tsg.237. https://tsg.centre-mersenne.org/articles/10.5802/tsg.237/
  • References
  • Cited by

[1] M. Bestvina ℝ-trees in topology, geometry, and group theory, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 55-91 | MR: 1886668 | Zbl: 0998.57003

[2] A. Casson; S. Bleiler Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, Volume 9, Cambridge University Press, Cambridge, 1988 | MR: 964685 | Zbl: 0649.57008

[3] M. Cohen; M. Lustig Very small group actions on R-trees and Dehn twist automorphisms, Topology, Volume 34 (1995) no. 3, pp. 575-617 | MR: 1341810 | Zbl: 0844.20018

[4] T. Coulbois; A. Hilion; G. Levitt; M. Lustig (en préparation)

[5] T. Coulbois; A. Hilion; M. Lustig ℝ-trees and laminations for free groups III : Currents and dual ℝ-tree metrics (2005) (preprint available on http://junon.u-3mrs.fr/hilion/)

[6] T. Coulbois; A. Hilion; M. Lustig Non uniquely ergodic R-trees are topologically determined by their algebraic lamination (2005) (preprint available on http://junon.u-3mrs.fr/hilion/)

[7] T. Coulbois; A. Hilion; M. Lustig ℝ-trees and laminations for free groups I : Algebraic laminations (2006) (arXiv :math.GR/0609416)

[8] T. Coulbois; A. Hilion; M. Lustig ℝ-trees and laminations for free groups II : The dual lamination of an ℝ-tree (2007) (arXiv :math.GR/0702281)

[9] Travaux de Thurston sur les surfaces (A. Fathi; F. Laudenbach; V. Poenaru, eds.), Astérisque, Volume 66-67, Société Mathématique de France, Paris, 1976 | Numdam | Zbl: 0406.00016

[10] I. Kapovich Currents on free groups (2005) (ArXiv :math.GR/0311053) | MR: 2216713

[11] I. Kapovich; M. Lustig The actions of Out(F k ) on the boundary of Outer space and on the space of currents : minimal sets and equivariant incompatibility (2006) (arXiv :math/0605548) | Zbl: 05166241

[12] Michael Kapovich Hyperbolic manifolds and discrete groups, Progress in Mathematics, Volume 183, Birkhäuser Boston Inc., Boston, MA, 2001 | MR: 1792613 | Zbl: 0958.57001

[13] H. Keynes; D. Newton A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z., Volume 148 (1976) no. 2, pp. 101-105 | EuDML: 172355 | Zbl: 0308.28014

[14] G. Levitt; M. Lustig Irreducible automorphisms of F n have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu, Volume 2 (2003), pp. 59-72 | MR: 1955207 | Zbl: 1034.20038

[15] M. Lustig ℝ-trees - currents - laminations : a delicate relationship (2007) (preprint)

[16] P. Shalen Dendrology of groups : an introduction, Essays in group theory (Math. Sci. Res. Inst. Publ.) Volume 8, Springer, New York, 1987, pp. 265-319 | MR: 919830 | Zbl: 0649.20033

[17] W. Veech Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc., Volume 140 (1969), pp. 1-33 | MR: 240056 | Zbl: 0201.05601

[18] K. Vogtmann Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Volume 94 (2002), pp. 1-31 | MR: 1950871 | Zbl: 1017.20035

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
ISSN : 1624-5458 - e-ISSN : 2118-9242
© 2009 - 2022 Centre Mersenne, Séminaire de théorie spectrale et géométrie, and the authors